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Abstract

We provide an introduction to the mapping class group, which is the group of the symmetries of a surface.

Firstly, we describe basic properties of surfaces. Next, we consider homeomorphisms of surfaces that preserve

its topological properties. A special example of such is a Dehn twist. We define a Dehn twist on an annulus

and then extend the notion to a Dehn twist about a simple closed curve on a surface. As a result, we find

that Dehn twists are important elements of the mapping class group. In fact, they generate the mapping

class group of a compact orientable surface. Lastly, we give examples of trivial mapping class groups and

explore mapping class groups of infinite order, namely that of the annulus and torus. We conclude with

additional remarks about braid groups and their connection to mapping class groups.
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1 Introduction

Symmetries are ubiquitous in the natural world and one can learn about an object by studying its group

of symmetries. This is a common theme in mathematics; for example, in abstract algebra, the study of

the symmetric group and the dihedral group uncovers the beauty of two fundamental objects, namely, a

finite set and a regular polygon, respectively. In this expository piece, we delve into the realm of surfaces

to explore this fundamental object in topology. We dedicate the entire next section to describe basic prop-

erties and homeomorphisms of surfaces. We also define being homotopic as an equivalence relation, as it

is an important notion to consider when handling simple closed curves on surfaces. Then we highlight a

special example of a homeomorphism called a Dehn twist. Since we consider orientable surfaces, we have

that annulus neighborhoods exist, and, thus, we can apply a Dehn twist to obtain homotopic curves and

homeomorphisms that belong to the same mapping class. Together, these mapping classes form a group,

which leads to a formal definition of a mapping class group of a surface. Next, we give examples of trivial

mapping class groups, such as that of S1, S2 and D2. Lastly, we look at the annulus and torus to prove

interesting results about these mapping class groups of infinite order.

Geometric group theory is devoted to the study of groups and the spaces on which they act. As im-

portant algebraic invariants of topological spaces, mapping class groups play an significant role in the study

of 3-dimensional manifolds. They are also valuable in understanding the topology of surfaces. In fact, their

origins lie in the topology of hyperbolic surfaces, especially, the study of the intersections of closed curves

on hyperbolic surfaces. Since then, we have discovered a plethora of remarkable attributes of the mapping

class group of surfaces. It is related to various other groups, including braid groups.

2 Surfaces

Definition 2.1 (surface). A surface is a two-dimensional manifold with or without boundary. Informally,

it is a geometrical shape that resembles a deformed plane.

Example 2.1. Boundaries of solid objects in R3, such as a sphere and torus, are the most familiar examples.

· · · · · · · · ·

Figure 1: A list of surfaces without boundary.
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2.1 Basic properties

Definition 2.2 (compact). A compact surface is a surface that is also a closed and bounded set.

Definition 2.3 (surface with boundary). Let S be a surface. The boundary of S is the collection of points

on S minus the set of all interior points of S, i.e. ∂S = S \ int(S). If ∂S ̸= ∅, then S is a surface with

boundary.

Example 2.2. Some examples of surfaces with boundary include a disk, annulus, pair of pants, and torus

with a disk removed.

· · ·

Figure 2: A list of surfaces with boundary.

Remark 2.1. An orientable surface allows a consistent definition of “clockwise” and “counterclockwise.”

On the other hand, a surface is non-orientable if and only if it contains a Möbius band.

Remark 2.2. The genus g of an orientable surface S is an integer representing the number of handles, or

holes, on S.

Example 2.3. In Figure 1, the surfaces are listed in ascending order from genus 0 to genus n.

Definition 2.4 (homeomorphism). Let S be a surface. A homeomorphism f : S → S is a continuous

bijection with a continuous inverse.

Remark 2.3. Some examples include rotations, reflections and hyperelliptic involutions. Note that the

orientation changes under a reflection. Moreover, a special example of a homeomorphism that cannot be

realized by rigid motions is a Dehn twist. We dedicate the entire next section to this topic.

Example 2.4. Using polar coordinates, define the rotation by angle θ as

fθ : S1 → S1

(1, α) 7→ (1, α+ θ),

where α is any angle.

Theorem 2.1 (Classification of Surfaces). Every compact, orientable surface without boundary is homeo-

morphic to one of the surfaces from Figure 1. See [3] for more details.
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Remark 2.4. In other words, compact, orientable surfaces without boundary are homeomorphic if and only

if they share the same genus g.

2.2 Homotopy between homeomorphisms

Definition 2.5 (homotopic). Let S be an orientable surface and let f : S → S and g : S → S be two

homeomorphisms. We call f and g homotopic if there exists a continuous map H : S × [0, 1] → S such that

H0 = f and H1 = g, where Ht(x) = H(x, t).

Proposition 2.1. The identity map idS1 is homotopic to the homeomorphism fθ from Example 2.4.

Proof. Consider the map

H : S1 × [0, 1] → S1

(α, 0) 7→ α

(α, 1) 7→ α+ θ.

Then H(α, t) = α+ θt, where H0 = idS1 and H1 = fθ. Thus, idS1 is homotopic to fθ.

Proposition 2.2. The identity map idS2 is homotopic to the homeomorphism fθ : S2 → S2.

Proof. Choose an axis of rotation, say the z-axis, and define the rotation map by angle θ of S2

fθ : S2 → S2

(r, α, z0) 7→ (r, α+ θ, z0 + z),

where radius r > 0, angle α ∈ [−π, π] and z0, z ∈ R is the usual z-coordinate in the Cartesian coordinate

system. Then using a similar idea as in Proposition 2.1, consider

H : S2 × [0, 1] → S2

(α, z0, 0) 7→ (α, z0)

(α, z0, 1) 7→ (α+ θ, z0 + z).

We omit writing r for convenience. It follows that H(α, z0, t) = (α + θt, z0 + zt), where H0 = idS2 and

H1 = fθ. So, idS2 is indeed homotopic to fθ : S2 → S2.
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Lemma 2.1. Homotopy defines an equivalence relation.

Proof. We need to show that homotopy satisfies reflexivity, symmetry and transitivity.

Reflexive Let f : X → Y be a continuous function and define H : X × [0, 1] → Y such that H0 = H1 = f .

Then clearly H(x, t) = f(x). Thus, f is homotopic to itself.

Symmetric Suppose f is homotopic to g. Then there exists a homotopy F : X × [0, 1] → Y such that

F0 = f and F1 = g. We want to show that there exists a homotopy H : X × [0, 1] → Y such that H0 = g

and H1 = f. Since H(x, 0) = F (x, 1) and H(x, 1) = F (x, 0), we can set H(x, 1
2 ) = F (x, 1

2 ). Therefore, we

can choose H(x, t) = F (x, 1− t), so g is homotopic to f.

Transitive Lastly, suppose f is homotopic to g and g is homotopic to h. Given F : X× [0, 1] → Y such that

F0 = f and F1 = g and G : X × [0, 1] → Y such that G0 = g and G1 = h, we want to construct a homotopy

H : X × [0, 1] → Y such that H0 = f and H1 = h. Notice that H(x, 0) = F (x, 0) and H(x, 1) = G(x, 1).

Moreover, F (x, 1) = G(x, 0). Take H(x, 1
2 ) = F (x, 1) = G(x, 0). Then we can write

H(x, t) =


F (x, 2t) if t ∈ [0, 1

2 ]

G(x, 2t) if t ∈ ( 12 , 1].

Hence, our proof is complete.

3 Dehn twists

We return to a special example of a homeomorphism, namely a Dehn twist. First, we look at a Dehn twist

on an annulus and then on a surface. Using polar coordinates (r, θ) for points in the plane R2, we consider

the annulus A made up of those points with 1 ≤ r ≤ 2.

Definition 3.1 (Dehn twist on A). We define a Dehn twist on A as follows:

TA : A −→ A

(r, θ) 7−→ (r, θ − 2πr),

where the boundary of A, denoted ∂A, is fixed pointwise.

Remark 3.1. We can consider the core of an annulus A, which is the set of points when r = 3
2 . Every simple

closed curve, i.e. loops without self-intersections, on an orientable surface is the core of some annulus.
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TA

Figure 3: A Dehn twist on an annulus A.

Tα

Figure 4: A Dehn twist about the red simple closed curve α.

Definition 3.2 (Dehn twist on a surface). Let S be an orientable surface with two simple closed curves α

and β. Then a Dehn twist about α on S is obtained by choosing an annulus A, applying Tα and extending

by the identity, i.e. fixing every point in S \A. Similarly, a Dehn twist about β on S is obtained by choosing

an annulus A, applying Tβ and extending by the identity.

β

α A

S

Tα
Tα(β)

α A

S

Figure 5: We realize the simple closed curve α as the core of annulus A.

β

A

S

β

A

S

α Tβ(α)

Tβ

Figure 6: We realize the simple closed curve β as the core of annulus A.
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Remark 3.2. In Figure 5, suppose we choose a different annulus A′. Then we will obtain a curve T ′
α(β)

that is homotopic to Tα(β). Moreover, we have that Tα and T ′
α are homotopic homeomorphisms and, thus,

belong to the same mapping class, which we will define in the next section. In particular, any choice of

annulus will yield an element of the mapping class of Tα.

4 Mapping Class Groups

We can consider the set of all homeomorphisms of a surface S, denoted by Homeo(S). For surfaces with

boundary, we only consider the homeomorphisms that fix ∂S pointwise.

Remark 4.1. The set of all homeomorphisms that are homotopic to identity 1S is denoted by Homeo0(S).

Lemma 4.1. Homeo(S) is a group, with Homeo0(S) as a normal subgroup.

Proof. Clearly, Homeo(S) is a group since function composition is associative, 1S ∈ Homeo(S) and for

any f ∈ Homeo(S), its inverse f−1 ∈ Homeo(S), by definition. Moreover, Homeo0(S) is a subgroup of

Homeo(S). Note that 1S ∈ Homeo0(S) since 1S is homotopic to itself. Let f, g ∈ Homeo0(S). We can

define the homotopy H(x, t) = F (G(x, t), t), where F : S × [0, 1] → S is a homotopy such that F0 = 1S and

F1 = f and G : S × [0, 1] → S is a homotopy such that G0 = 1S and G1 = g for all x ∈ S. Then H0(x) = x

and H1(x) = f(g(x)). So it follows that Homeo0(S) is closed under function composition. Furthermore, let

f, g, h ∈ Homeo(S) with f and g homotopic. Then h ◦ f is homotopic to h ◦ g since we can construct the

homotopy K(x, t) = h(H(x, t)) such that H : S × [0, 1], where H0 = f and H1 = g. Using this fact, we

deduce that for any f ∈ Homeo0(S), also f−1 ∈ Homeo0(S) when we notice that f−1 ◦ f is homotopic to

f−1 ◦ 1S .

Now we show that Homeo0(S) ⊴ Homeo(S). It suffices to show that for any g ∈ Homeo(S) and f ∈

Homeo0(S), we have that gfg−1 ∈ Homeo0(S). Since f ∈ Homeo0(S), there is F : S × [0, 1] → such that

F0 = f and F1 = 1S . Note that for any 0 ≤ t ≤ 1,

H(x, t) = g(F (g−1(x), t))

such that H0 = gfg−1 and H1 = 1S is continuous. Therefore, our proof is complete.

Definition 4.1 (Fundamental group). The fundamental group of a topological space X, denoted π1(X,x),

is the group of homotopy classes of x-based loops in X.

Remark 4.2. In Section 3, we deduced that if f is homotopic to g and α is a simple closed curve, then

f(α) and g(α) are homotopic curves. The fundamental group of a surface captures the group structure of

9



equivalence classes of simple closed curves on a surface.

4.1 Definitions and elementary examples

Now we can introduce a formal definition of the mapping class group.

Definition 4.2 (Mapping class group). Let S be an orientable surface. The mapping class group of S,

denoted by MCG(S), is the group of homotopy classes of orientation-preserving homeomorphisms of S, i.e.

MCG(S) = Homeo+(S) / Homeo0(S).

Remark 4.3. Elements of the mapping class group are called mapping classes.

Example 4.1. From Proposition 2.1, idS1 and fθ belong to the same mapping class in MCG(S1). In fact,

every homeomorphism of S1 is homotopic to idS1 , so MCG(S1) is trivial.

Example 4.2. Similarly, from Proposition 2.2, idS2 and fθ belong to the same mapping class in MCG(S2).

Theorem 4.1 (Alexander Lemma). The mapping class group of the closed disk D2 is trivial.

Proof. Let f : D2 → D2 be a homeomorphism and assume that f(x) = x for any x ∈ ∂D2. We want to show

that f is homotopic to idD2 . Consider the map H : D2 × [0, 1] → D2, where

H(x, t) =


x, if 1− t ≤ |x| ≤ 1

(1− t)f( x
1−t ), if 0 ≤ |x| < 1− t

for t ∈ [0, 1). Moreover, define H(x, 1) = idD2 .

Note that H is continuous, and thus, the homotopy between f and idD2 . Therefore, MCG(D2) = {idD2}.

Remark 4.4. We call the previous proof, the Alexander trick.

Now we explore mapping class groups of infinite order, such as that of the annulus and torus.

4.2 The simplest infinite order mapping class group

Definition 4.3 (path). Let X be a topological space. A path in X is a continuous function f : [0, 1] → X.

Definition 4.4 (simply-connected). A topological space X is simply-connected if any loop in the space can

be continuously deformed into a single point, i.e. is contractible.

Remark 4.5. The fundamental group of X at each point in the space measures how far X is from simply-

connectedness. A path-connected space is simply-connected if and only if its fundamental group is trivial.
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Remark 4.6. A surface S is simply-connected if and only if it is connected with genus 0.

Example 4.3. It follows from Remark 4.6 that S2 is simply-connected.

Definition 4.5 (covering). A covering of a space X is another space E together with a map Φ : E → X

such that for any point x ∈ X, there exists an open neighborhood U of x such that Φ−1(U) is a disjoint

union of open sets in E, each of which is mapped homeomorphically onto U.

Definition 4.6 (Universal cover). A universal cover of X is a covering space that is simply-connected.

Remark 4.7. If a connected topological space X is simply-connected, then it is its own universal cover.

Example 4.4. By Example 4.3 and Remark 4.7, S2 is its own universal cover.

Example 4.5. R is the universal cover of S1. Note that R is a simply-connected space with the covering

map f : R → S1 such that f(t) = e2πit.

Example 4.6. Let A be an annulus. The universal cover of A is the infinite strip Ã ≈ R× [0, 1] since A is

homeomorphic to S1 × [0, 1].

T̃α

π π

Tα

Figure 7: A preferred lift of a Dehn twist about the red simple closed curve α on A.

Theorem 4.2. MCG(A) ≈ Z.

Proof. We construct a map ρ : MCG(A) → Z. Let f ∈ MCG(A) and let φ : A → A be any homeomorphism

representing the mapping class f. Then φ has a preferred lift φ̃ : Ã → Ã such that φ̃|R×{0} = id|R×{0}.

Now let φ̃1 : R → R denote the restriction φ̃|R×{1}. Note that we can canonically identify φ̃1 with R. Next,
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we define ρ(f) = φ̃1(0). Notice that any homeomorphism homotopic to identity satisfies φ̃1(0) = 0 since

φ̃|R×{1} = id|R×{1}. For any homeomorphism that is not homotopic to identity, φ̃1(0) = n, where n ∈ Z\{0}.

This follows from the fact that ∂A is fixed pointwise and we only consider simple closed curves on A, so there

cannot be any intersections of arcs in Ã. Hence, ρ(f) = φ̃1(0) ∈ Z. Since compositions of homeomorphisms

of A map to compositions of integer translations of R, it is clear that ρ is a homomorphism.

Further, we find that ker(ρ) is trivial since ∂A is fixed pointwise and any homeomorphism homotopic to

identity satisfies φ̃1(0) = 0. Every homeomorphism homotopic to identity lifts to arcs homotopic to the ones

shown in Figure 7 on the left infinite strip. Thus, ρ is injective. And surjectivity follows from the existence

of a homeomorphism for each integer translation. See [2] for a more detailed proof.

Remark 4.8. Every homeomorphism that is homotopic to Tα maps to 1 ∈ Z under the map ρ. The integer

translation for the mapping class of Tα is depicted in Figure 7.

4.3 The mapping class group of the torus

Theorem 4.3. MCG(T 2) ∼= SL2(Z).

Proof. (Sketch) We use a similar method as in Theorem 4.2. Construct a map σ : MCG(T 2) → SL2(Z).

Note that R2 is the universal cover of T 2. Let Tα be a Dehn twist about α on T 2, which can clearly be

representative of an element of MCG(T 2). Then Tα has a preferred lift T̃α : R2 → R2. See Figure 8.

Every simple closed curve on a torus can be homotoped to intersect a point and lifts to a line through the

origin which also passes through another integer point. In fact, the first such point is (n,m), where gcd(n,m)

= 1. Moreover, since there is a bijective correspondence between nontrivial homotopy classes of oriented

simple closed curves on T 2 and the primitive elements of Z2, there must exist some matrix A ∈ SL2(Z) such

that A((n,m)) = (1, 0). Notice that T̃α(1, 0) = (1, 0) and T̃α(0, 1) = (1, 1). Thus, T̃α is a linear, orientation-

preserving homeomorphism of R2 preserving Z2. It follows that T̃α is isomorphic to Tα, where Tα : R2 → R2

is a linear transformation such that Tα(1, 0) = (1, 0) and Tα(0, 1) = (1, 1). So we can represent a Dehn twist

about α as

Tα =

1 1

0 1

 .

Now let Tβ be a Dehn twist about β, which is another representative of a mapping class in MCG(T 2).

Then we deduce that T̃β is isomorphic to Tβ , where Tβ : R2 → R2 is a linear transformation such that
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β

α A

S

Tα

T̃α

Tα(β)

α A

S

π π

0 1 2 3

1

2

0 1 2 3

1

2

Figure 8: A preferred lift of a Dehn twist about α on T 2.

Tβ(1, 0) = (1,−1) and Tβ(0, 1) = (0, 1). Hence, we can represent a Dehn twist about β as

Tβ =

 1 0

−1 1

 .

Recall that SL2(Z) is the set of all 2 × 2 matrices with integer entries and determinant 1. Moreover, it is

generated by the matrices Tα and Tβ . It turns out that the mapping class group of the torus is generated by

the same matrices. See [2] for the full proof.

Theorem 4.4. The mapping class group of a compact orientable surface is generated by Dehn twists.

4.4 Connection to braid groups

The notion of a mathematical braid is classical with a historical record that dates back to thousands of years

ago. They entered the realm of mathematics a couple of centuries ago and one of their first appearance was

in Gauss’s study of knots in the early 19th century and Hurwitz’s paper on Riemann surfaces in 1891. Soon
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after, in 1925, Artin formally defined a braid group and now there is a modern mathematical study of braids

that offers new perspectives of these enchanting objects.

Informally, we define a braid to be an intertwining of n strings, where n ∈ N and the strings remain at

separate ends, i.e. they do not fuse together. We use σi to describe the braid in which the i-string crosses

over the i+ 1-string. Each n-braid can be expressed as a braid word (e.g σ1σ2σ
−1
1 in B3).

Definition 4.7 (Braid group). The braid group on n strands, denoted Bn, is the group of equivalence classes

of n−braids.

Remark 4.9. The group operation for Bn is concatenation, which is clearly associative, the identity braid

does not contain any strings that cross over another, and the inverse of a braid ”undoes” the original braid.

Theorem 4.5. The braid group Bn has the presentation

Bn = ⟨σ1, σ2, · · · , σn−1 |σiσj = σjσi for |i− j| > 1 and σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2⟩.

Proposition 4.1. B2
∼= Z.

Proof. By Theorem 4.5, the braid group B2 has the presentation

B2 = ⟨σ1⟩.

Since B2 is generated by a single element, and thus cyclic, it follows that B2 is isomorphic to Z.

Remark 4.10. B2 ≈ MCG(A).

Proposition 4.2. B3
∼= ⟨x, y |x2 = y3⟩.

Proof. Let G = ⟨x, y |x2 = y3⟩. Then we can define the map

f : G → B3

x 7→ σ1σ2

y 7→ σ1σ2σ1.

We check that f is well-defined. By Theorem 4.5, we have that B3 = ⟨σ1, σ2 |σ1σ2σ1 = σ2σ1σ2⟩, so

f(x3) = σ1σ2σ1σ2σ1σ2 = σ1σ2σ1σ1σ2σ1 = f(y2).
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Thus, x3 = y2 implies that f(x3) = f(y2). Now it remains to find f−1 and check that it is also well-defined.

Consider the map

f−1 : B3 → G

σ1 7→ x2y−1

σ2 7→ yx−1.

Since f ◦ f−1 = 1B3 and f−1 ◦ f = 1G, we deduce that B3 is ismomorphic to G. Therefore, we have shown

B3
∼= ⟨x, y |x2 = y3⟩.

Definition 4.8 (Configuration space). A configuration space is the set of all possible ordered configurations

of n particles

Cn(R2) = {(p1, p2, · · · , pn) ∈ (R2)n | pi ̸= pj for i ̸= j},

where pi ̸= pj is the condition that the particles must not collide. We can also consider the set of all possible

unordered configurations of n particles

UCn(R2) = {{p1, p2, · · · , pn} ⊂ R2 | pi ̸= pj for i ̸= j}.

Remark 4.11. Note that the left wall and right wall of a configuration space represent points in UCn(R2).

In fact, they can be realized as the same point so we can form the notion of a loop in the space.

Theorem 4.6. The fundamental group of UCn(R2) is isomorphic to the braid group Bn. See [1] or [2] for

more details.

Now we return to mapping class groups and consider a disk with n punctures Dn. Then define a map

φ : Bn → MCG(Dn). Given a braid, we slide the disk across the braid to obtain a homeomorphism. We

can visualize this as follows: each puncture is connected by a string to the boundary of the disk and each

mapping homomorphism that permutes two of the punctures can then be seen to be a homotopy of the

strings, i.e. a braid. It turns out that φ is indeed an isomorphism.

Remark 4.12. ByMCG(Dn), we denote the group of mapping classes of homeomorphisms of an n-punctured

disk which fix points on the boundary of the circle pointwise, but not necessarily the n punctures.

Theorem 4.7. The mapping class group of an n−punctured disk MCG(Dn) is isomorphic to the braid

group Bn.
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Remark 4.13. Using this mapping class group interpretation of braids, each braid can be classified as

periodic, reducible or pseudo-Anosov (Nielsen–Thurston classification).

In this subsection, we have been exposed to three distinct perspectives of braid groups, namely, as traditional

braids, configuration spaces and punctured disks. Remarkably, the bridge between braid groups and mapping

class groups serves as a guidepost for the Birman–Hilden theory. This connection to braid groups illuminates

the relevance of mapping class groups, with numerous additional linkages to indulge.

Figure 9: Three perspectives of B3: traditional braid, configuration space and 3-punctured disk.
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Summary

We have surveryed the basics of mapping class groups. Significant players are homeomorphisms, especially

Dehn twists, and their mapping classes. As generators of the mapping class group, a profound understanding

of these functions provides insight on the surfaces in consideration. In particular, we have coined the term

‘symmetries’ to describe a certain discrete group (i.e. a topological group that does not contain any limit

points) that is associated with the space. Mapping class groups frequent many areas of mathematics and

their connection to braid groups exemplifies this phenomenon.

This prompts some ideas for future areas of research.

• Which groups are also mapping class groups?

• What are other generating sets for the mapping class group?

• How can we use representations of braid groups to deduce that the mapping class group of a genus 2

surface is a linear group?
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